General Description #### **Features** The MAX15112 evaluation kit (EV kit) provides a proven design to evaluate the MAX15112 high-efficiency, 12A, step-down regulator with integrated switches in a 24-bump wafer-level package (WLP). The EV kit is preset for 1.5V output at load currents up to 12A from a 2.7V to 5.5V input supply. The device features a 1MHz fixed switching frequency, which allows the EV kit to achieve an all-ceramic capacitor design and fast transient responses. - ♦ Operates from a 2.7V to 5.5V Input Supply - ♦ All-Ceramic Capacitor Design - ♦ 1MHz Switching Frequency - ◆ Output Voltage Range 0.6V Up to 0.94 x V_{IN} (Forced PWM) 0.6V Up to 0.85 x V_{IN} (Skip Mode) - ♦ Enable Input/Power-Good Output - ♦ Selectable Skip-Mode Functionality - ♦ Proven PCB Layout - ♦ Fully Assembled and Tested Ordering Information appears at end of data sheet. ### **Component List** | DESIGNATION | QTY | DESCRIPTION | |-------------|-----|--| | C1, C2, C3 | 3 | 22µF ±20%, 6.3V X5R ceramic
capacitors (1206)
TDK C3216X5R0J226M | | C5 | 0 | Not installed, ceramic capacitor (0603) | | C7, C8 | 2 | 100µF ±10%, 6.3V X5R ceramic capacitors (1206) Murata GRM31CR60J107M | | C9, C10 | 0 | Not installed, ceramic capacitors (1206) | | C11 | 1 | 1μF ±10%, 10V X7R ceramic
capacitor (0603)
Murata GRM188R71A105K | | C13 | 1 | 0.47µF ±10%, 16V X7R ceramic capacitor (0603) Murata GRM188R71C474K | | C14 | 1 | 22pF ±5%, 50V ceramic
capacitor (0603)
Murata GRM1885C1H220J | | C15 | 1 | 3300pF ±10%, 50V X7R ceramic capacitor (0603)
Murata GRM188R71H332K | | DESIGNATION | QTY | DESCRIPTION | | |-----------------------|-----|---|--| | C16 | 1 | 0.1µF ±10%, 50V X7R ceramic capacitor (0603) TDK C1608X7R1H104K Murata GRM188R71H104K | | | C18 | 1 | 1500pF ±10%, 50V X7R ceramic capacitor (0603) Murata GRM188R71H152K | | | C19, C20 | 2 | 10μF ±10%, 6.3V X5R ceramic capacitors (0603) Murata GRM188R60J106K | | | C21, C22 | 2 | 1000µF ±20%, 10V aluminum
electrolytic capacitors (10.3mm x
10.3mm)
Panasonic EEEFP1A102AP | | | C23 | 1 | 2.2µF ±10%, 16V X7R ceramic
capacitor (0603)
Murata GRM188R61C225K
TDK C1608X5R1C225K | | | IN, OUT,
PGND (x2) | 4 | Binding posts | | | JU1 | 1 | 2-pin header | | | JU2 | 1 | 3-pin header | | | L1 | 1 | 0.22µH, 21A inductor
Vishay IHLP2525BD01R22M01 | | ## **Component List (continued)** | DESIGNATION | QTY | DESCRIPTION | | |-------------|-----|----------------------------|--| | R1 | 1 | 3.32kΩ ±1% resistor (0603) | | | R2 | 1 | 2.21kΩ ±1% resistor (0603) | | | R3 | 1 | 5.23kΩ ±1% resistor (0603) | | | R4, R5 | 2 | 100kΩ ±5% resistors (0603) | | | R6 | 1 | 100Ω ±5% resistor (0603) | | | R7 | 1 | 4.7Ω ±5% resistor (0603) | | | R8 | 1 | 1Ω ±1% resistor (0805) | | | R12 | 1 | 10Ω ±1% resistor (0603) | | | DESIGNATION | QTY | DESCRIPTION | |-------------|-----|---| | R13 | 1 | 0Ω ±5% resistor (0603) | | R14 | 1 | 470Ω ±5% resistor (0402) | | U1 | 1 | 12A current-mode buck converter (24 WLP) Maxim MAX15112EWG+ | | _ | 2 | Shunts | | _ | 1 | PCB: MAX15112 EVALUATION
KIT | ## **Component Suppliers** | SUPPLIER | PHONE | WEBSITE | |--|--------------|-----------------------------| | Murata Electronics North America, Inc. | 770-436-1300 | www.murata-northamerica.com | | TDK Corp. | 847-803-6100 | www.component.tdk.com | | Vishay | 402-563-6866 | www.vishay.com | Note: Indicate that you are using the MAX15112 when contacting these component suppliers. ### **Quick Start** ### **Recommended Equipment** - MAX15112 EV kit - 5V, 7A DC power supply - Load capable of sinking 12A - · Digital voltmeter #### **Procedure** The EV kit is fully assembled and tested. Follow the steps below to verify the board operation. Caution: Do not turn on power supply until all connections are completed. - Connect the positive terminal of the 5V supply to the IN PCB pad and the negative terminal to the nearest PGND PCB pad. - 2) Connect the positive terminal of the 12A load to the OUT PCB pad and the negative terminal to the nearest PGND PCB pad. - 3) Connect the digital voltmeter across the OUT PCB pad and the nearest PGND PCB pad. - 4) Verify that a shunt is installed on jumper JU1. - 5) Verify that a shunt is installed on 2-3 on jumper JU2. - 6) Turn on the DC power supply. - 7) Enable the load. - 8) Verify that the voltmeter displays 1.5V. ## **Detailed Description of Hardware** The MAX15112 EV kit provides a proven design to evaluate the MAX15112 high-efficiency, 12A, step-down regulator with integrated switches. The applications include distributed power systems, portable devices, and preregulators. The EV kit is preset for 1.5V output at load currents up to 12A from a 2.7V to 5.5V input supply. The device features a 1MHz fixed switching frequency, which allows the EV kit to achieve an all-ceramic capacitor design and fast transient responses. Input aluminum electrolytic capacitors (C21, C22) are provided to damp the input if long wires are used; they are not required in a tight system design. ### Soft-Start and Reference Input (SS/REFIN) The device utilizes an adjustable soft-start function to limit inrush current during startup. The soft-start time is adjusted by the value of C16, the external capacitor from SS/REFIN to GND. By default, C16 is currently $0.1\mu F$, which gives a soft-start time of approximately 6ms. To adjust the soft-start time, determine C16 using the following formula: $$C16 = (10\mu A \times t_{SS})/0.6V$$ where t_{SS} is the required soft-start time in seconds and C16 is in farads. C16 should be a minimum of 1nF capacitor between SS/REFIN and GND. The resistor in series with the soft-start capacitor (R14) improves load regulation. When no external reference is applied at SS/REFIN, the device uses the internal 0.6V reference. An external tracking reference with steady-state value between 0 and V_{IN} - 2.5V can be applied to SS/REFIN. Refer to the Setting the Soft-Start Time section of the MAX15112 IC data sheet for a more detailed description. During 1ms hiccup timeout, the SS/REFIN pin is pulled to GND internally to discharge the soft-start capacitor. R6 limits the currents from an externally supplied reference during the 1ms hiccup timeout event. #### **Setting the Output Voltage** The EV kit can be adjusted from 0.6V up to 0.94 x V_{IN} (forced PWM) by changing the values of resistors R1 and R2. To determine the value of the resistor-divider, first select R2 between $1k\Omega$ and $20k\Omega$. Then use the following equation to calculate R1: $$R1 = R2 [(V_{OUT}/V_{FB}) - 1]$$ where V_{FB} is equal to the reference voltage at SS/REFIN and V_{OUT} is the desired output. If no external reference is applied at SS/REFIN the internal reference is automatically selected and V_{FB} becomes 0.6V. When regulating for an output of 0.6V in skip mode, set R1 to 0Ω and keep R2 connected from FB to GND. When R1 is changed, compensation components C14, R1, and C15 must be changed to ensure loop stability (refer to the *Compensation Design Guidelines* section in the MAX15112 IC data sheet). ### Regulator Enable (EN) The device features a regulator enable input. For normal operation, a shunt should be installed on jumper JU1. To disable the output, remove the shunt on JU1 and the EN pin will be pulled to PGND through resistor R4. See Table 1 for JU1 settings. ### Skip-Mode Input (SKIP) The device offers selectable skip-mode functionality to reduce current consumption and achieve a higher efficiency at light loads. To operate in skip mode, install a shunt on pins 1-2 on jumper JU2. See Table 2 for JU2 settings. Caution: Do not change the setting of the skip jumper while the device is operating. Table 1. Regulator Enable (EN) Jumper JU1 Description | SHUNT POSITION | EN PIN | DEVICE OUTPUT | |----------------|---------------------------|---------------| | Installed* | Connected to IN | Enabled | | Not installed | Pulled to PGND through R4 | Disabled | ^{*}Default position. Table 2. Skip-Mode Input (SKIP) Jumper JU2 Description | SHUNT POSITION | SKIP PIN | MODE | |----------------|-------------------|----------------------| | 1-2 | Connected to EN | Skip-mode operation | | 2-3* | Connected to PGND | Forced-PWM operation | ^{*}Default position. Figure 1. MAX15112 EV Kit Schematic Figure 2. MAX15112 EV Kit Component Placement Guide—Component Side Figure 4. MAX15112 EV Kit PCB Layout—Inner Layer 2 Figure 3. MAX15112 EV Kit PCB Layout—Component Side Figure 5. MAX15112 EV Kit PCB Layout—Inner Layer 3 Figure 6. MAX15112 EV Kit PCB Layout—Solder Side Figure 7. MAX15112 EV Kit Component Placement Guide—Solder Side ## **Ordering Information** | PART | TYPE | |----------------|--------| | MAX15112EVKIT# | EV Kit | #Denotes RoHS compliant. ## **Revision History** | REVISION
NUMBER | REVISION
DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|------------------|-------------------------------------|------------------| | 0 | 7/11 | Initial release | _ | | 1 | 9/12 | Updated Component List and Figure 1 | 1, 4 | Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.